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ABSTRACT. We show how pointwise values of a function, f(x), can be accurately recovered
either from its spectral or pseudospectral approximations, so that the accuracy depends solely
on the /ocal smoothness of f in the neighborhood of the point . Most notably, given the
equidistant function grid values, its intermediate point values are recovered within spectral
accuracy, despite the possible presence of discontinuities scattered in the domain. (Recall
that the usual spectral convergence rate decelerates to first order throughout the domain).

To this end we employ a highly oscillatory smoothing kernel in contrast to the more standard
positive unit-mass mollifiers.

In particular, post-processing of a stable Fourier method applied to hyperbolic equations with
discontinuous data recovers the exact solution modulo a spectrally small error. Numerical
examples are presented.

2004: Manipulation of piecewise smooth data from its spectral information




OVERVIEW

Part I. Detection of edges from global moments

Concentration Kernels I — localization around edges

e Enhancement — separation of scales

©® Extensions: discrete and non-periodic data; noisy data; 2D data, ...

Part II. High resolution reconstruction.

Adaptive Mollifiers I — high order accurate 2-parameter kernels

e Normalization — high resolution near edges

® Spectral Viscosity: spontaneous shock discontinuities




Different scales of smoothness: detection of edges

e Global moments: fi. = (f, ¢1)

N . .
Snlfl(@) = 3 frethe, ¢pp, > €T
—N

® Smooth f's: spectral/exponential accuracy ...

1Sn[f1(2) = f(2)| < Const.e™ .

() Piecewise smooth f’'s: Gibbs' phenomenon

O Spurious oscillations (‘ringing’); first-order accuracy
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BExampte Reconstruction of discontinuous f's from their spectral data
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Concentration near edges: concentration kernels S{[f], w/N = 20,40,80 modes
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Concentration kernels with enhancement



I. Concentration kernels

0
e Normalization: c, = 0(9 )de Vo () € C2(0,1)

7r'1,0

O(1), =z~ singsupp|f]
Sl = [f](z) + O(en) ~

O(epn), f(-)|,%,j smooth

e Detection of edges by separation of scales: en ~ (Nd%x))s <1

® Concentration kernels: concentrate near O(1) edges

K{(t) i= —— Z ('ﬁ)smkt

T k|<N

SYLf] i= Ky« Syf = K« f ~ [fl(x)....



Concentration Kernels — the general framework

(i) Odd kernels: Ky(—t) = —Kxn(t)
(ii) Normalized: Kn(t)dt ~ —1
t>0
(iii) Admissibility condition: |/tKN(t)so(t)dt < Const.en|¢l pv

Main result: (i), (ii) and (iii) imply for piecewise smooth f

[f1¢€) = O(1)  x € singsupp(f)

Ky(z) = [ = [fl(z) + O(en) ~ {
O(en) f(-) smooth ~ x

e Detection of edges by separation of scales



Local vs global concentration kernels
odd, normalized and admissible:

(i) Local kernels:

Kn(t) = ¢ty (), ¢e(t) = (L), ¢€Ch(~1,1)

Admissibility — concentrates near the origin: /|tKN(t)|dt < Cey.
» Haar and bi-orthogonal moments — localized kernels

(ii) Global kernels: K3 (t) = —%Za(l—]@) sinkt, o(0) € C%(0,1)
o

Admissibility — "heroic’ cancelation of oscillations:

cos(N + 3)t
2msin(t/2)

1
Kn(t) ~o(1) + Constm + ...

o Convergence rate: S [fl(z) — [f](z)| < C’onst.(Nd(:v)>_80 + ...




1 I
Concentration factors o(6;) : — . sgn(k)o(0y,) fre™™

©® ‘Linear’ (Fejer): |o(0;) = 0 0, =

S = 7 3 e = T (5w () = @) + 0<Nd1(x)),

o Adaptivity: dependence on d(z):= distance(x, singsupp(f))

® ‘Exponential’ (Gelb-ET.): o°TP(0,) = 6, e—ﬁk(ﬁz—l)

o optimal localization: S}~ “[f1(z) ~ [f](z) + O(e—C()nStde(aﬁ)>

e Extensions: dospectral data, Chebysheyv, ...

N | ] |
Tylf(z) = - S sgn(k)o(0p) fre™™,  fro= D0z f(zy)e F

€0 k=—N
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Edge detection, S{[f], using (left) — the exponential concentration factor o°*?(0) = 3exp(

vs. (right) — the linear o(0#) = 0 with N = 20,40,80 modes.

Top: f = fu(x) and Bottom: f = f,(x).
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Enhancement

e Enhance separation of scales: fix r > 1

) N—T/2 r € smooth regions
(VN x SZ[f1(=))
N™/2[f]"(&)  at jumps
e [ hreshold for identifying an edge >>> 1 Jorit

h SLA@) i [VNSEIA@)| > Jorit
en ance[f](x) —

O otherwise

e Nonlinear scale-free detection: MinMod detection

| min (|S;'V=lm(x)\, \Sﬁ:,”p(az)\) if S=lin x S5P > Q
mm{Sg=ln, SyPT =

0] otherwise

Edges are barriers for propagation of smoothness at a given scale
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Enhanced edge detection using conjugate sums, S [f](z) = ci Za(%)sgn(k)fkeikx
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Minmod detection mm{S$-"", Sy*}, for fy(x) with N =40 and N = 80 gridpoints.



Enhanced Spectral Viscosity method: Burgers' eq.
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Fourier SV-approximation
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Enhanced Fourier SV-approximation
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T

The solution to the inviscid Burgers equation with periodic boundary conditionsattime T =1
using (left) the Fourier SV-approximation and (right) the enhanced Fourier SV-approximation

for N = 64.
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Legendre SV-approximation
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The solution to the inviscid Burgers equation with periodic boundary conditions at time
t = 1.5 using (left) the Legendre SV-approximation and (right) the enhanced Legendre
SV-approximation for N = 64.



Enhanced Legendre SV-method (Riemann problem)

o
T T
o
o
™ T T

=)
G

o
-
T

density discontinuities
density discontinujties
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Detection of the shock discontinuities using the ‘concentrated’ method (left) and the en-

hanced edge detection method (right). N = 128 modes.

density

Density profile using the Legendre SV-method (left) and the enhanced version (right).
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density contact discontinujfies

Detection of the contact discontinuities using the ‘concentrated’ method (left) and the

enhanced edge detection method (right).
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Pressure profile using the Legendre SV-method (left) and the enhanced version (right).



Adding noise: fi ~ L= £ 7 n = B(|7,))3

e A new small scale: white noise with variance n := E(|r|)?:

N6 N n = 0(noiseless)
a(0) ~ o {

1+ Bn(NO)2’ %tan_l(\/ﬁ]\f) n>0

Separation of scales: smoothness scale O(1/N) <« Noise O(n) <« edges O(1)

Signal plus noise, n = 0.000020 Concentration Factor,n = 0.000020
1.5
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Signal plus noise, n = 0.000045 Concentration Factor,n = 0.000045
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2D setup: Detection of edges in earth topography

mountain data

theta

theta

(©) Nonlinear enhancement: 48 latitudinal x 96 longitudinal gridpoints



II. Adaptive mollifiers. Reconstruction between edges.

e One-parameter finite order mollifiers: s(x) = %w(%)
p vanishing moments: 5% f— f = O(PT1) | 0 fixed order p

® Two-parameter spectrally accurate mollifiers (Gottlieb-ET. 1985):

©® Starting with... ¥ (x) = Yp(x) := p(x)Dp(x)

sin(p+3)z

o Dp — Dirichlet kernel of degree p, Dp = rsin(z/2)

o p(x) € C§°(—m,m) cut-off with p(0) =1 ( important!)

1 1
Ups = S0n(5) = Sp()Dp(5)

supp(ty,5) = 0

o Spectral order: increasing # of vanishing moments, p = py



Adaptive mollifiers — direction of smoothness

© Set 6 so f(x —y)yps(y) admits largest domain of smoothness:

§ ~ d(x) := dist(z, singsupp(f))

e How to find d(z)? — detection of edges from part1 ...

® § is fixed; so where does the spectral accuracy come from?

® Choose p = py — with increasing # of vanishing moments ...

® '‘Optimal’ solution of the moment problem modulo spectrally small error:

/:ijp,5(:c)d:v = /:Ujp(m)Dp(:v)da: = + Consts - py~ °, Vs

theoretical bound: p=pny ~ VN Gottlieb-ET. '85




Spectrally accurate mollifiers

Upo* SNF(@) = f@) = [ Sn(pDR)W)f (e — dy)dy — f(2) = ...

.. Trunction 7 +——

[ [(Sn = DD £z - y)dy +

Regularization 77 «—— +[/ Dp(y)p(y) | £ (@ — 8y) — f()]dy

® Spectrally small truncation Z: pllos %)

P\ 1\° PN ~ VN I
e Spectrally accurate mollifier: (N) ~|—] =

p

= |~

© Spectrally small regularization Z7:  ||pf|cs(z—5 2+45) X (

1
— Error of order ~ C’onsts(ﬁ)s, Consts ~ |[pfllcs(z—5 z+45)» VS

Spectrally small error bound, but computations show otherwise for d(x) < 1...
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Recovery of fo(x) from its first N = 128 Fourier modes, on the left, and the corresponding
regularization errors (dashed) and truncation errors (solid) on the right, using the spectral
mollifier 1), s based on various choices of py's:

(@)-(b) py = N%°, (¢)-(d) py = N®%, (e)-(f) pxv = Nd(z)/m/e.



Exponential accuracy revisited: v, 5 = $p(%)Dp(%)

e ET.-Tanner 2001: Adaptive choice: p = py ~ d(x)N

' 1 57=0 —Const. X
/ijp,(s(a:)dw“{ 0 3>0 }+O<e Const- ANy -5 = d(), p ~d(z)N

O{ZIZ'2

® Go Gevrey regularity of cut-off p(z) = ex®—72 : ||p||cs ~ (s))°n~*

e Exponential accuracy | (¢, 5 x SN f(z) — f(:c)‘ < Cp-d(z)N - e —Const.A/d(z)N

e [ he discrete case — high-order 'expolants’

2N—-1

v 2 Ups(r =y flw) = f(@)| < Const - (d(a)N)Ze” VAN
v=0

Exponential accuracy except near edges where d(z) ~ 1/N: normalization ...



Adaptivity — sharper resolution near edges
e Gottlieb: Gegenbauer mollifiers — uniform high accuracy up to the edges
e Our approach: adaptive order (ENO,...) by normalization ...

e How to normalize? enforce exact vanishing moments ...

¥ps . = P

Vpo Ty P TP Ty

. exponential accuracy away from edges d(z) >> 1/N

p(0) =1+ Const.e_"\/m

e Adaptive mollifier of variable order r ~ d(x)N
fx) —tpsx Snf(z) = f(z) — fxSnipp () < Const.(d(z)) 1

provided we normalize

| @Sy (a)de =



(Left): Recovery of f(x) from its N = 128-modes spectral projections; Normalized mollifier,
Yo Of degree p = d(x)N/mv/e

(Right): Log error for recovery of f(x) based on N = 32,64,128 modes.



2D Reconstruction of earth topography

Spectral reconstruction vs. localized reconstruction



EPILOGUE

e Adaptive filters (vs. mollifiers):

1 k|, + :
Rl =a 3 o ikets

2T k<N

based on an adaptive Go-filter:

( gp

€CUP<T1)7 |£| <1

c=op@) =] ° L oy = (nd(@)N)2,
0, €] > 1.

\

e 2D detection and reconstruction of piecewise Radon data
e More about noisy data
e More about spectral (and hierarchical) viscosity:

http://www.cscamm.umd.edu/ " tadmor/spectral_viscosity/
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